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12 Life’s Information Hierarchy

Jessica Flack

SUMMARY

1 propose that biolagical systems are information hierarchies orga-
nized into multiple functional space and time scales. This multi-
scale structure results from the collective effects of components
estimating, in evolutionary or ecological time, regularities in their
environments by coarse-graining or compressing time-series data
and using these perceived regularities to tune strategies. As coarse-
grained {slow) variables become for components better predictors than
microscopic behavior (which fluctuates), and component estimates
of these variables converge, new levels of organization consolidate.
This process gives the appearance of downward causation - as com-
ponents tune to the consolidating level, variance at the component
level decreases. Because the formation of new levels results from
an interaction between component capacity for regularity extraction,
consensus formation, and how structured the environment is, the
new levels, and the macroscopic, slow variables describing them, are
characterized by intrinsic subjectivity. Hence the process producing
these variables is perhaps best viewed as a locally optimized collective
computation performed by system components in their search for
conflgurations that reduce environmental uncertainty. If this view
is correct, identifying important, functional macroscopic variables
in biological systems will require an understanding of biological
computation. I will discuss how we can move toward identifying laws
in biology by studying the computation inductively. This includes
strategy extraction from data, construction of stochastic circuits
that map micro to macro, dimension-reduction techniques to move
toward an algorithmic theory for the macroscopic output, methods for
quantifying circuit collectivity, and macroscopic tuning and control.
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INTRODUCTION

A significant challenge before biology is to determine whether living
systems — composed of noisy, adaptive, heterogencus components
with only partly aligned interests - are governed by principles or laws
operating on universal quantities that can be derived from micro-
scopic processes or reflect contingent events leading to irreducible
complexity {Gell-Mann and Lloyd, 1996; Goldenfeld, 1999; Krakauer
and Flack, 2010; Krakauer et al., 2011; Flack et al., 2013). We know
the answer to this question for physical systems and it is useful to
recall that understanding in physics was achieved only after extensive
debate. This debate began with the observation that certain average
quantities - temperature, pressure, entropy, volume, and energy -
exist at equilibrium in fundamental relationship to each other, as
expressed in the ideal gas law. This observation led to thermo-
dynamics, an equilibrium theory treating aggregate variables. When
these variables were derived from first principles using statistical
mechanics - a dynamical theory treating microscopic variables - the
debate about whether regularities at the macroscopic scale were fun-
damental was partly resolved; by providing the microscopic basis for
the macroscopic variables of thermodynamics, statistical mechanics
established the conditions under which the equilibrium relations are
no longer valid or expected to apply.

This brief summary of the relation between thermodynamics
and statistical mechanics in physics is illuminating because it raises
the possibility of a potentially deep division between physical and
biological systems. So far, and admittedly biology is young, biology
has had limited success discovering relationships ameng macroscopic
variables and deriving these variables from first principles rooted in
physical laws or deep evolved constraints. Two areas in which there
has been success include metabolic scaling (West and Brown, 2005;
West et al., 1997) and neural coding (Schneidman et al., 2006; Tkavcik
et al., 2013). Both allometric scaling and neural coding theories help
to explain how large populations of cells achieve a coordinated max-
imization of a group-level property. For scaling, this property is the
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maximization of efficient metabolic energy use, and for neural coding
the most efficient information extraction from environmental inputs.
In the scaling case in particular the theory has served to validate
that the macroscopic cbservation that mass scales with metabolic
rate to the 3/4 power has a basis in mechanism - in other words the
macroscopic variables can be said to be fundamental-obeying laws -
rather than nominal (Krakauer and Flack, 2010}, and in that sense are
getting closer to temperature, pressure, entropy, etc.

Although the idea of aptimization subject to simple constraints
can explain a surprisingly broad range of quantifiable variation in
evolved systems, from physiology to ecology, and from genetics to
development (e.g., Beggs, 2008; Couzin, 2009; Frank, 2013; Shriki
et al., 2013; West and Brown, 2005), the number of fundamental
macroscopic variables known in biological systems remains small
and limited to cases like scaling where energy plays a direct role in
influencing structure. Whether there is some null expectation for how
many we might expect in biological systems given the complexity of
the microscopic behavior is a totally open question and perhaps not
yet well posed.

THE IMPORTANCE OF INFORMATION

Beyond the obvious heterogeneity another possible reason for the
so-far limited progress identifying biological laws or principles is
that biological systems are collective, computational, and involve
information processing {Couzin et al., 2005; Flack, 2012, 2014; Flack
and Krakauer, 2011; Flack et al., 2013; Hartwell et al,, 1999; Krakauer
et al., 2011; Levin, 1992; Mitchell, 2011; Vetsigian et al., 2006; von
Dassow et al., 2000; Walker and Davies, 2013; Yuh et al., 1998). Exam-
ples include swarming behavior in social insects (Conradt and Roper,
2005}, feature detection in the peripheral visual pathway (Olshausen
and Field, 1996), and voting behavior or consensus formation in
primate groups (Flack and Krakauer, 2006; Brush et al,, 2013). These
examples hint at limitations in the scope of application of traditional
physical theories. In each of these systems the basic elements,
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i.e., ants, neurons, or primates, often live in relatively small
populations, are adaptive with interaction rules that are subject to
learning, and have functional properties at the aggregate level that
feed back to influence the decision-making rules or strategies guiding
behavior.

We have proposed that in systems like these functionally
important macroscopic properties arise as heterogenous, adaptive
components extract regularities from their environments to reduce
uncertainty. This facilitates adaptation, thereby promoting survival
and reproduction. Hence in biclogical systems functional macro-
scopic properties are constructed over evolutionary, developmental,
and ecological time.

In our work, which we review briefly in Examples, we have
shown that the collective effects of this regularity extraction can be
captured with coarse-grained {or compressed) variables; endogenous
coarse-graining represents the average perceived regularity in the
environment at the microscopic level. As estimates of the regularities
by components (as opposed to the scientist-observers) converge with
exposure to larger data samples, the coarse-grained variables consol-
idate, providing a new effective background against which compo-
nents tune strategies, and creating new space and time scales. This
estimation and consensus assessment process makes such variables
subjective, perhaps nonstationary, and inferential in character.

This recasting of the evolutionary process as an inferential
one (Bergstrom and Rosvall, 2011; Krakauer, 2011} is based on
the premise that organisms and other biological systems can be
viewed as hypotheses about the present and future environments
they or their offspring will encounter, induced from the history of
past environmental states they or their ancestors have experienced
(e.g., Crutchfield and Feldman, 2001; Krakauer and Zanotto, 2009].
This premise, of course, holds only if the past is prologue - that
is, has regularities, and the regularities can be estimated and even
manipulated (as in niche construction} by biological systems or their
components to produce adaptive behavior {Flack et al., 2013).
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If these premises are correct, life at its core is computational,
and a central question becomes: How do systems and their compo-
nents estimate and control the regularity in their environments and
use these estimates to tune their strategies? I suggest that the answer
to this question, and the explanation for complexity, is that biological
systems manipulate spatial and temporal structure to produce order -
low variance - at local scales.

UNCERTAINTY REDUCTION

With these ideas in mind let’s return for a moment to the question
of a biological laws. Biological systems ~ from cells to tissues to
individuals to societies — have nested organizational levels (e.g., as
reviewed in Maynard Smith and Szathmary, 1998). These levels can
be quantitatively described by their space and time scales, and each
new level has associated with it some new or emergent function -
a new feature with positive payoff consequences for the system as
a whole or for its components (Flack et al., 2013}. This hierarchical
organization can be thought of as a nesting of functional encodings
of lower-level regularities. As I argue in this chapter and elsewhere
(Flack, 2012; Flack et al., 2013), these functional encodings form an
information hierarchy (see also Walker and Davies, 2013} that results
from biological systems manipulating space and time to reduce uncer-
tainty, thereby facilitating efficient extraction of energy, promoting
adaptation.

When macroscopic variables describing these levels are not
directly tied to energetic constraints, as in the scaling case, but havea
profoundly informational character - arising only as component esti-
mates of regularities converge - they may not be obvious a priori from
observation at the aggregate level. Discovery of the principles and
possibly laws goveming biological systems in these cases presumably
requires we take information processing and the subjective nature of
regularity extraction seriously.

To find the coarse-grainings favored by the system, we need to
adopt its perspective. One way to do this is to proceed inductively,
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working upward from the data, starting with dynamical many-body
formalisms and finding, through empirically grounded simulation and
modeling, equilibrium descriptions with a few favored macroscopic
degrees of freedom.

Hence I am proposing that to identify fundamental information
quantities of biology, we start by identifying provisional macroscopic
properties thought to have functional consequences for components,
but instead of next looking for equilibrium relationships among these
variables, as in physics and in the scaling case, ask instead whether

1. these provisional variables can be derived from microscopic data on
strategic interactions known to be important in the system, and

2. they are tunable and ‘readable’ by compenents {hence functional)
individually or collectively in evolutionary or ecological time.

If we can establish that the provisional macroscopic variables satisfy
these criteria, they become good candidate fundamental biological
variables, and the search for law-like relationships among them may
be more straightforward.

EXAMPLES

To make these ideas more concrete, let’s consider some examples. The
first comes from my own work on conflict management in animal
societies (for a review of this work, see Flack, 2012} - specifically,
third-party policing in primate groups.

Policing, a form of conflict management in which an individual
breaks up fights among other individuals, is the new or emergent
function. The provisional macroscopic property supporting this new
function is the distribution of social power, where power is opera-
tionalized as the degree of consensus in the group that an individual
can win fights {see Brush et al., 2013, and references therein). When
the power structure becomes effectively institutionalized {here mean-
ing associated with a relatively slow time scale and hard to change
because in order for an individual’s power to change many opinions
about fighting ability need change), it becomes a good predictor of the
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future cost of social interaction and provides information to the indi-
viduals about the kinds of conflict and conflict management behavior
they can afford given how power is distributed. When the distribution
Is heavy tailed, policing, which is an intrinsically costly strategy,
becomes affordable, at least to those individuals in the distribution’s
tail. These are the super-powerful monkeys who are rarely or never
challenged when they break up fights {Flack et al., 2006, 2005).

A primary driver of the emergence of new functionality such as
policing is the reduction of environmental uncertainty through the
construction of nested dynamical processes with a range of charac-
teristic time constants (Flack, 2012; Flack et al., 2013). In the case of
the monkeys, a slowly changing status signaling network that sums
up the outcomes of fights arises from the conflict interactions and
encodes an even more slowly changing power structure. These nested
dynamical processes arise as components extract regularities from
fast, microscopic behavior by coarse-graining (or compressing) the
history of events to which they have been exposed. So the monkeys
coarse-grain over their fight histories with other individuals to figure
out who in a pair will likely win the fight. The collective coarse-
grained assessment, which changes yet more slowly, of who can win
fights gives the consensus in the group about who has power and
provides the basis for the power distribution {Brush et al., 2013),

Proteins offer another example from a very different level of
biological organization. Proteins can have a long half-life relative to
RNA transcripts and can be thought of as the summed output of
translation. Cells have a long half-life relative to proteins and are
a function of the summed output of arrays of spatially structured
proteins. Both proteins and cells represent some average measure
of the noisier activity of their constituents. Similarly, a pig-tailed
macaque’s estimate of its power is a kind of average measure of
the collective perception in the group that the macaque is capa-
ble of winning fights, and this a better predictor of the cost the
macaque will pay during fights than the outcome of any single
melee, as these outcomes can fluctuate for contextual reasons. These
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coarse-grainings, or averages, are slow variables {Flack, 2012; Flack
and de Waal, 2007; Flack et al., 2013, see also Feret et al., 2009, for &
similar idea). Slow variables may have a spatial component as well
as a temporal component, as in the protein and cell examples, or,
minimally, only a temporal component, as in the monkey example,
The basic idea is that as a consequence of integrating overabun.
dant microscopic processes, slow variables provide better predictors of
the local future configuration of a system than the states of the fluctu-
ating microscopic components. In doing so, they promote accelerated
rates of microscopic adaptation. Slow variables facilitate adaptation
in two ways: they allow components to fine-tune their behavior and
free components to search at low cost a larger space of strategies for
extracting resources from the environment (Schuster and Fontana,
1999; Rodriques and Wagner, 2009; Flack and de Waal, 2007; Flack,
2012; Flack et al., 2013). This phenomenon is illustrated by the power-
in-support-of-policing example and also by work on the role of neutral
networks in RNA folding. In the RNA case, many different sequences
can fold into the same secondary structure, This implies that over
evolutionary time, structure changes more slowly than sequence,
thereby permitting sequences to explore many configurations under
normalizing selection (e.g., Schuster and Fontana, 1999).

SLOW VARIABLES TO FUNDAMENTAL MACROSCOPIC
PROPERTIES

As an interaction or environmental history builds up at the micro-
scopic level, the coarse-grained representations of the microscopic
behavior consolidate, becoming for the components increasingly
robust predictors of the system’s future state - the slow variables
become fundamental macroscopic properties. We speak of a new
organizational level when

1. the system’s components rely to a greater extent on these coarse-grained
or compressed descriptions of the system’s dynamics for adaptive
decision-making than on local fluctuations in the microscopic behavior
and
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1, when the course-grained estimates made by components are largely in
agreement (Flack et al., 2013).

The idea is that convergence on these ‘good-enough’ estimates
underlies nonspurious correlated behavior among the components.
This, in turn, leads to an increase in local predictability and drives
the construction of the information hierarchy. (Note that increased
predictability can give the appearance of downward causation in the
nbsence of careful analysis of the bottom-up mechanisms that actu-
ally produced it; see also Walker and Davies, 2013). The probability
of estimate convergence should increase as the sample size grows,
if the computational capacities of the components are similar, and
through a feedback amplification process as new organizational levels
consclidate.

CHALLENGES

Biology as Collective Computation

If, as I am arguing, life is an information hierarchy that results
from biological components collectively estimating environmental
or social regularities by coarse-graining or compressing time-series
data, a natural (and complementary} approach is to treat the micro
and macro mapping as a computation,

Describing a biological process as a computation minimally
requires that we are able to specify the output, the input, and the
algorithm or circuit connecting the input to the output (Flack and
Krakauer, 2011; see also Mitchell, 2011; Valient, 2013}. A secondary
concern is how to determine when the desired output has been
generated. In computer science this is called the termination criterion
or halting problem.

In bioclogy it potentially can be achieved by constructing nested
dynamical processes with a range of time scales, with the slower
time-scale processes (the slow variables) providing the ‘background’
against which the fitness of a component using a given strategy is
evaluated (Flack and Krakauer, 2011). The idea is that the system
makes a prediction based on its prior experience in this stable,
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slowly changing environment about which strategy will increase
its fit (measured, for example, in terms of mutual information or
fitness) to the environment and tunes its behavior to implement the
strategy.

As an example, consider the distribution of social power dis-
cussed above. Because the DSP is slowly changing (compared with
the interaction and status signaling rates at the individual level), it
provides a stable background against which the monkeys can “pre-
dict the future cost of interaction” and hence tune their behavioral
strategies. It is this ability to predict, derived from the degree of
time-scale separation between the power distribution and underlying
distribution of fighting abilities, that reveals when the computation
is “correct.” Here, in contrast to computer science, the output is
continuously computed and the notion of correctness comes from the
utility of the output for prediction.

A macroscopic property can be said to be an output of a com-
putation if it can take on values that have functional consequences
at the group or component level, is the result of a distributed and
coordinated sequence of component interactions under the operation
of a strategy set, and is a stable output of input values that converges
{terminates) in biologically relevant time (Flack and Krakauer, 2011 ).
Examples studied in biology include aspects of vision, such as edge
detection (Olshausen and Field, 1996); phenotypic traits, such as the
average position of cells in the developing endomesoderm of the sea
urchin [e.g., Peter and Davidson, 2011); switching in biomolecular
signal-transduction cascades (e.g., Smith et al., 2011); and social
structures, such as the distribution of fight sizes (e.g., DeDeo et al.,
2010; Flack and Krakauer, 2011) and the distribution of power in
monkey societies (e.g., Brush et al., 2013),

The input to the computation is the set of elements implement-
ing the rules or strategies. As with the output, we do not typically
know a priori which of many possible inputs is relevant, and so we
must make an informed guess based on the properties of the output.
In the case of a well-studied phenotypic trait such as the development
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of a sea urchin’s endomesoderm, we might start with a list of genes
that have been implicated in the regulation of cell position. In the
case of the distribution of fight sizes in a monkey group, we might
start with a list of individuals participating in fights.

In a biological system, the input plus the strategies constitute
the system’s microscopic behavior. There are many approaches to
reconstructing the system’s microscopic behavior from raw data. The
most powerful is an experiment in which upstream inputs to a target
component are clamped off and the output of the target component
is held constant. This allows the experimenter to measure the target
component’s specific contribution to the behavior of a downstream
component.

When such experiments are not possible, causal relationships
can be identified using time-series analysis in which clamping is
approximated statistically. My collaborators and I have developed a
novel comimtational technique, cailed inductive game theory (IGT)
{DeDeo et al., 2010; Flack and Krakauer, 2011), that uses a statistical
clamping principle to extract strategic decision-making rules, game
structure, and (potentially) strategy cost from time-series data. (IGT
is one of many approaches being developed in a growing body of
literature on causal network reconstruction from time-series and
correlation data.}

In all biological systems, of course, there are multiple
components interacting and simultaneously coarse-graining to make
predictions about the future. Hence the computation is inherently
collective. A consequence of this is that it is not sufficient to
simply extract from the time series the list of the strategies in play.
We must also examine how different configurations of strategies
affect the macroscopic output. One way these configurations can be
captured is by constructing Boolean circuits describing activation
rules, as illustrated by the work on echinoderm gene regulatory
networks controlling embryonic cell position (the output) in the sea
urchin {Peter and Davidson, 2011). In the case of our work on micro
to macro mappings in animal societies, we describe the space of
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microscopic configurations — fight decision-making rules - using
Markovian, probabilistic, social circuits (DeDeo et al., 2010; Flack
and Krakauer, 2011).

Nodes in the gene regulatory circuits and social circuits
described above are the input to the computation. As discussed
above, the input can be genes, neurons, individuals, subgroupings
of components, etc. A directed edge between two nodes in the circuit
indicates that the “receiving node” has a strategy for the “sending
node,” and the edge weight can be interpreted as the probability that
the sending node plays the strategy in response to some behavior by
the receiving node in a previous time step. Hence, an edge in these
circuits quantifies the strength of a causal relationship between the
behaviors of a sending and receiving node.

Sometimes components have multiple strategies in their reper-
toires. Which strategy is being played at time t may vary with context.
These metastrategies can be captured in a circuit using different types
of gates specifying how a component’s myriad strategies combine
{(DeDeo et al., 2010; Flack and Krakauer, 2011; see also Feret et al.,
2009). By varying the types of gates and/or strength of allowed causal
relationships, we end up with multiple alternative circuits - a family
of circuits - all of which are consistent with the microscopic behavior,
albeit with different degrees of precision. Each circuit in the family is
essentially a model of the micro-macro relationship and so serves as a
hypothesis for how strategies combine over nodes {inputs} to produce
the target output. By testing the empirically parameterized circuits
against each other in simulation we can determine which best recov-
ers the actual measured macroscopic behavior of the study system
and in this way discover if our provisional macroscopic variable may
indeed be a candidate fundamental variable.

Circuit Logic

The circuits describing the microscopic behavior can be complicated,
with many ‘small’ causes detailed, as illustrated by the gene
regulatory circuits constructed by Eric Davidson and his colleagues.
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The challenge once we have rigorous circuits is to figure out the
circuit logic.

There are many ways to approach this problem. Qur appreach
is to build what’s called in physics an effective theory: a compact
description of the causes of a macroscopic property. Effective theories
for biological systems composed of adaptive components require an
additional criterion beyond compactness. As discussed earlier in this
chapter, components in these systems are tuning their behaviors
based on their own effective theories - coarse-grained (or compressed)
rules {see also Feret et al., 2009) that capture the regularities they
perceive. If we are to build an effective theory that explains the origins
of functional space and time scales, new levels of organization, and
ultimately the information hierarchy, the effective theory must be
consistent with component models of average system behavior, as
these models guide component strategy choice. In other words, our
effective theory should explain how the system itself is computing
(see also Walker and Davies, 2013).

My collaborators and I begin the search for cognitively prin-
cipled, algorithmic effective theories using what we know about
component cognition to inform how we coarse-grain and compress
the circuits {Daniels et al.,, 2012}. This means taking into account,
given the available data, the kinds of computations components can
perform and the error associated with these computations at the indi-
vidual and collective levels, given component memory capacity and
the quality of the data sets components use to estimate regularities
(Krakauer et al,, 2010].

Information and Energy in Biology

As discussed above, once we have a satisfactory family of candidate
effective theories for how our system is computing its macroscopic
output, we need to choose from among them the one that best
recovers our observable and is also the most mechanistically prin-
cipled. Generally we require two criteria be met to claim a model
{or circuit) is mechanistically principled. The model must capture
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causal relationships supported by the data - how individual strategies
or some simplification of them actually combine to produce the
output. The second criterion is that the model must be cognitively
or computationally parsimonious. This requires knowing something
about the cognitive or computational burden that each of the models
assumes of the system and its components {Krakauer et al., 2010).
In other words, we need to be able to measure the number of bits
required to parameterize each model for a given level of performance,
and for most systems we study in biology the number of allowable
(given component computational capacity) bits should {probably) be
relatively small.

The Informational Cost of Biological Computation

Calculating for a reasonably sized data set the number of bits required
to perform the computation is generally achievable and allows com-
parison across the models within the study, but it is not at all clear
what it means in an absolute sense to say that a particular theory or
compressed representation of the system behavior requires x number
of bits to encode.

For example, in our work on monkey conflict dynamics (Daniels
etal., 2012), we found that about 1,000 bits of information are required
to encode which individuals and subgroups are regular and predictable
participants in fights, assuming a sparse coding algorithm. Qur other
models performed worse {required more bits). In this sense our bits
measurement was a useful bar against which to compare models, but
we cannot yet claim to have any idea whether a model requiring 1,000
bits is reasonable given our subjects’ cognitive capacities. Establishing
this requires an experimental approach.

Anocther open question includes how the informational cost
of computation changes when the computation is collective, Work
on robustness {e.g, Ay et al,, 2007) and distributed computation
suggests that reliability of the output may increase, but this work does
not explicitly address how variance in the output at the component
level affects the number of bits required to encode the collective
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computation. Hence the output may be more reliable, but the total
informational cost could be much higher. This may not matter if there
are strong, shared constraints on the component computations and/or
the tuning is only at the component level.

Bits to Joules and the Energetic Cost of Computation
We understand the relationship between energy and information in
the limit, as Landauer’s principle tells us that there is a minimum
amount of energy required to erase one bit of information (Bennett,
2003). However, even if we could in a compelling model-free way
quantify the number of bits required to encode a model or make a
decision, we have no idea how bits translate into watts in the adaptive,
stochastic, information-processing, many-body systems of biology
and sociéty, or how this question could be approached empirically.
Yet from the perspective of evolutionary theory it seems likely
that information processing is adaptive — meaning it allows biological
systems to more efficiently, given constraints, extract energy and do
the work required to promote survival and reproduction. Another
way of putting this is that even if physical theory says information-
processing is energetically costly (Parrondo et al., 2015}, evolutionary
theory suggests that, in the long run, or given an understanding of
the full set of constraints to which a biological system is subject,
information-processing saves watts. Unpacking this proposition may
be the key to go from the information-processing mechanisms pro-
ducing slow variables and emergent function to the identification of
biological laws.

COLLECTIVE COMPUTATION TO STRATEGIC
STATISTICAL MECHANICS FOR MANY-BODY,

ADAPTIVE SYSTEMS

As understanding of the micro-macro mapping is refined through
identification of cognitive effective theories that parsimoniously
reduce circuit complexity and compactly encode the macroscopic
output, we also refine our understanding of the natural scales
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of the system. This includes distinguishing strategic microscopic
behavior from noise, and hence allows us to extract from {rather
than imposing on) the raw data the building blocks of our system.
And by investigating whether our best-performing empirically
justified circuits can also account for other functionally important
macroscopic properties, we can begin to establish which macroscopic
properties might be biologically fundamental and whether they stand
in law-like relation to one another. One can think of this approach as
a strategic statistical mechanics, embedding complex decision rules
in formalisms for calculating emergent properties and discovering
law-like behavior at the aggregate level.

These ideas are very closely related to the pioneering ideas
of John von Neumann (D. C. Krakauer, personal communication|,
who in the 1940s and 1950s began the development of a statistical
mechanics of biologically inspired sensing and computing devices
(von Neumann, 1987). He writes (von Neumann, 1954):

anything that can be exhaustively and unambiguously described,
anything that can be completely and unambiguously put into
words, is ipse facto realizable by a suitable finite neural
network ... we get an image of the strong limitations that our
sensations, our intuitions, our logic and our language have to
obey. We can put all these things in a more complete statement:
The following restrictions are mutually equivalent: to be
macroscopic; to be Euclidean (i.e. to adopt the parallel axiom in
the way we represent space and spatial relations}; to be
Galileo-Newtonian in the way we represent motion, time and
energy; to capture the surrounding and to act according to our
sensorial-intuitive perception of reality; to use and to represent
language, in both its natural and artificial variants.

Where von Neumann speaks of neural networks constrained
by sensorial perception of classical observations, we consider {D. C.
Krakauer, personal communication) how strategic, behavioral rules
{(de Waal, 1991, Flack et al., 2004), when combined into stochastic
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circuits expressed in the language of Markov decision processes,
produce and respond to coarse-grained aggregate information through
near-critical system states. In less technical language, we explore
chains of probabilistic events - decisions or state transitions — that
generate and respond efficiently to average features of the world.
This enables these systems to tune adaptively to the needs of their
social environment. My collaborators and I believe that to develop a
statistical mechanics that can accommodate these kinds of adaptive,
strategic systems we will need to extend existing physical theories by
incorporating ideas from theoretical computer science, information
theory, and evolutionary biology.
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13 Living through Downward
Causation

From Molecules to Ecosystems

Keith D, Farnsworth, George E. R. Ellis, and
Luc Jaeger

Downward causation [frst defined by Campbell, 1974} is both a philo-
sophical concept and an apparent phenomenon of nature attracting
great controversy. Most scientists usually assume that all observable
phenomena derive from elemental fundamental physics, so that even
human behaviours ultimately result from interactions of subatomic
particles, via a unidirectional chain of causes and effects. On closer
inspection, the act of living seems able to spontaneously generate
events, breaking this chain; it is as though life possessed ‘free will’ by
acting without a prior physical cause. In this chapter, we analyse this
puzzling behaviour using information and control theory as a general
framework, applying it to a range of scales of organisation in biological
systems: from the molecular to the ecological. An essential element
{and possibly a defining feature) of life emerges from this analysis. It
is the presence of downward causation by information selection and
control. Through a series of examples, we show how this phenomenon
works to produce the appearance of autonomous action from informa-
tion constructed and maintained by the process of living. After a brief
introduction to the concept of downward causation, we set it more
firmly within the concepts of biological information processing used
within this volume. From this we attempt to derive a general classifi-
cation of causation across scales of biological organisation. We show
how selection from random processes and information embodiment
in molecules, organism systems, and ecological systems combine to
emerge with the properties of downward causation and the appearance
of autonomy. These phenomena seem to be exclusive to life.




